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1. Introduction 

This report describes an analysis of the electromagnetic (EM) fields which are 

backscattered from a two dimensional S-shaped inlet cavity. Figure 1.1 shows the 

geometry of this problem along with all the variable parameters. The interior 

walls of the S-shaped cavity are perfectly conducting with a thin absorber coating. 

The planar interior termination is made perfectly conducting. The S-shaped inlet 

is assumed here to be modeled by joining appropriate sections of parallel plate 

waveguides and uniform annular waveguides as is evident from Figure 1.1. 

The two basic scattering mechanisms of the inlet cavity of Figure 1.1 are the 

scattering from just the edges at the open end, and the scattering from the interior 

termination within the inlet cavity. A plane wave is assumed to be incident on 

the inlet at some aspect angle ( 8 )  and encounters the edges at the open end of the 

inlet. The two leading edges thus scatter part of this incident energy by diffraction at 

those edges to give the direct contribution from the opening by itself. The scattering 

from the interior cavity region is due to the incident energy which couples into the 

natural modes of the piecewise uniform waveguide sections of the S-shaped inlet, 

and propagates to the end termination to be then reflected back into the aperture 

at the open end from which it radiates into the exterior region. In addition to 

these primary scattering mechanisms, there are higher order effects which need 

to be considered. These include the small reflections due to the discontinuities at 

junctions between sections, the slightly larger internal reflection of the energy by the 

aperture, and the multiple wave interactions between all these scattering centers. 

Chapters 2 and 3 describe an efficient hybrid combination of asymptotic high 

frequency (HF) methods with the modal technique that is used to analyze the 

scattering from a perfectly conducting inlet [1,10]. The fields in the guide are 

expanded into the natural waveguide modes of each uniform section. The relative 

strengths of these modes are represented with coefficients which can be expressed 
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Figure 1.1: Geometry of the S-shaped inlet cavity. 

2 



in column matrix form. Reflection at a junction, transmission through a junction 

and propagation through a section are all represented as rectangular matrices which 

operate on the column matrices for the coefficients of the modes incident on the 

junction. The elements of these matrices are found using high frequency techniques 

such as the Kirchhoff approximation, the equivalent current approach, and modal 

ray-optics. The multiple interactions are accounted for using the self-consistent 

Multiple Scattering Matrix (MSM) formulation. The latter is essentially the same 

as the Generalized Scattering Matrix formulation [2]. 

Chapter 4 extends the method of chapters 2 and 3 to include inlets with thin 

absorber coatings on the inner walls using a small perturbation to the propagation 

constants of the waveguide sections. This method is limited to relatively small 

values of absorber thickness and loss. 

Chapter 5 describes a numerical method of finding the modal reflection coef- 

ficient for the reflection from the first junction of the inlet geometry. Refering to 

Figure 1.1, this is the reflection of a waveguide mode of section 1 incident at the 

junction between sections 1 and 2. The method expands the fields in each waveg- 

uide section into modes and solves for the unknown coefficients by matching the 

fields at the junctions. It is not very efficient but it can handle arbitrary impedance 

boundary conditions on the waveguide walls. This solution is included to test the 

modal reflection obtained from the perturbational approach of Chapter 4. 

Chapter 6 describes a purely ray-optical method of analyzing cavity scattering. 

The geometrical optics (GO) incident field which enters the inlet from the aperture is 

then tracked via rays through the inlet as they undergo multiple reflections from the 

inlet walls to reach the termination and then bounce back again to the aperture. An 

aperture integration (AI) is subsequently performed on this GO field scattered back 

into the aperture to obtain the exterior far field radiation from the aperture. The 

advantage of the GO/AI method is that it can handle arbitrary inlet geometries 
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other than inlets made up of uniform waveguide sections. Also, it can handle 

any type of absorbing wall material which can be characterized locally by plane 

wave reflection coefficients. However, this approach which ignores diffracted rays 

becomes less accurate for electrically small inlets and/or long inlets. It is included 

in this report mainly for comparison purposes and to supply an alternative analysis 

method. Also, this GO/AI technique, which ignores diffraction effects at the open 

end that also propagate into the inlet, is found to provide a reasonable estimate of 

the average of the backscattered field but not the details in the field pattern. 

A few numerical examples along with some measurements are included in chap- 

ters 4,5  and 6. Throughout the report an ejwt convention is assumed and suppressed. 

“TE” (Transverse Electric) means that the E-field is transverse to the direction of 

propagation, or equivalently, the E-field has only a component perpendicular to 

the plane of incidence. Similarly, “TM” (Transverse Magnetic) means the H-field 

is perpendicular to the plane of incidence. Here, the plane of incidence is defined 

by the incident ray and the a x i s  of the first parallel plate waveguide section of the 

S-shaped inlet. 
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2. Self-consistent Multiple Scattering Matrix Formulation 

The inlet considered in this report is made up of interconnected piecewise sec- 

tions of parallel plate waveguides and circularly curved or “annular” waveguides. 

The fields inside these guides can be expressed as an expansion of only the prop- 

agating ortho-normal waveguide modes. ’ Ortho-normal simply means that each 

mode is normalized to carry unit power and carries it independently of all the other 

modes in the guide. The modes themselves satisfy the wave equation and boundary 

conditions of the corresponding uniform guide which extends to infinity in both 

directions. For the annular guide, this would mean an infinitely extended angular 

space. To account for the finite lengths of the various guide sections and the multi- 

ple interactions between all the junctions and the open end, the Multiple Scattering 

Matrix (MSM) formulation is used [2]. 

A junction between two dissimilar waveguide sections can be characterized in 

terms of transmission and reflection matrices associated with the junction which 

relate the coefficients of the waveguide modes on either side of the junction. Figure 

2.1 shows a typical junction between waveguide sections which are both aemi-infinite 

(in this case, it is the junction between sections 1 and 2). Energy propagates down 

section 1 from the left and is incident on the junction. In general, a junction is 

formed by joining a pth waveguide section with a qth waveguide section. Thus, 

the sections p and q are physically connected together at the junction. Using the 

symbol U for the i-directed E-field of the TE case and the H-field of the TM case, 

respectively, the incident, reflected and transmitted fields at any junction between 

the pth and qth waveguide sections can be expressed as 
N 

n= 1 

‘Since the separation between the junctions is sufficiently large, the evanescent modes are ignored 
as they contribute negligibly. It is noted that evanescent modes cannot be normalised the same 
way as is done here for the propagating modes. 
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Figure 2.1: Junction between sections 1 and 2. 
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N 
- - B n n  6 ,j&Z (2.2) 

,+nr = ~ , ~ , , j v ~ d  (2.3) 

n=l 
M 

m=l 

where 6 ,  represents the nth transverse ortho-normal modal field of section p at the 

junction and 6, likewise represents the mot'' modal field of section q at the junction. 

The coefficients A,,, Bn, and C, can be represented as column vectors 

[AI = [ A l l  

PI = [ " ' I  
[CI = [ c ' ] .  

AN 

BN 

CiU 

The reflection and transmission scattering matrices for this junction between the 

pth and qth waveguide sections are then defined by 

IT,] = (2.10) 

Here, the reflection matrix is associated with the fields reflected back into the pth 

section when it is joined directly to the qth section. Likewise, the transmission 

matrix is associated with the fields transmitted into the qt" section when the fields 
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are incident from the adjoining pth section. N and M are the number of propagating 

modes in the adjoining sections p and q, respectively. Notice that [h] is N x N 

and [T’] is M x N. 
For the special case of the open end (the junction between waveguide section 1 

and the exterior region) the scattering matrices have a slightly different form. For 

the coupling into the inlet and the scattering from the open end, the fields can be 

expressed similarly to equations (2.1), (2.2) and (2.3) as 

(2.11) jk( z cos 6+y ain 6) e inc  = SUince- 

(2.12) 

(2.13) 

where Uim is a scalar representing the magnitude of the incident plane wave and 
+e j l  p is the distance to the receiver referenced from the lower (z,y = 0 )  edge. 

represents the field scattered back into the exterior by the edges at the open end, 

and @ana represents the field coupled (or transmitted) into the inlet. B is a scalar 

for this case and [C] is a column matrix as before. The reflection and transmission 

matrices can now be defined similarly to equations (2.7) and (2.8) as 

B = RolUim 

[C] = [TO,]u’“ 

(2.14) 

(2.15) 

where the subscript “0” refers to the exterior region. Notice that the reflection 

matrix has reduced to a scalar for this case and the transmission matrix has reduced 

to a column matrix (because [C] is a column matrix). The matrices describing the 

exterior radiation and the interior reflection from the open end when modal fields 

are incident from inside the guide are defined similarly as follows. 

N 

n=l 
(2.16) 
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Figure 2.2: The junction of Figure 2.1 with a termination in section 2. 

n= 1 
(2.17) 

(2.18) 

(2.19) 

c = [Go][A].  (2.20) 

Notice that [Rlo] is a square matrix and [T1O] is a row matrix (because C is a scalar). 

To include the effects of more than one scattering junction, the Multiple Scatter- 

ing Matrix (MSM) is used [2]. To illustrate its implimentation, consider the simple 

geometry of figure 2.1 with a termination placed in section 2 as shown in figure 2.2. 

The total reflection matrix [Rlz] in region 1 due to the junction between waveguide 

sections p = 1, Q = 2, as well as the termination is given via the MSM for that 
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in which 

[P21 = 

(2.21) 

(2.22) 

where [I] is an identity matrix, [P2] describes the propagation through section 2, 

and [R,] is a reflection matrix describing the termination. As an example, if the 

termination were a perfect electric conductor, for the TM case [Rt] would equal [I] 
and for the TE case [Rt] would equal -[I]. The above result for [R5sM] accounts 

for all the multiple wave interactions between the junction and the termination. 

To describe the multiple interactions of more than 2 scattering junctions (such as 

in the inlet of Figure l .l),  the MSM result of (2.21) is modified by simply replacing 

(Rt] with the MSM of the next junction [l]. This is repeated until the final junction 

associated with the termination is reached. For the inlet under consideration (see 

Figure 1.1) there are four junctions formed by connecting five dissimilar waveguide 

sections, a termination, and the open end which amount to a total of six different 

scattering junctions. Modifiying the MSM to include all six junctions, the total 

scattered field can be expressed as follows. 

(2.23) 

(2.24) 

(2.25) 

10 



(2.26) 

(2.27) 

(2.28) 

where the junction matrices are defined using the “pq” convention as before. 

It is seen from symmetry considerations that some of the above matrices are 

equal. Also, as will be shown later, the transmission matrices at a junction are 

reciprical. Appendix D lists these relations. With these simplifications, only eight 

of the original eighteen reflection and transmission matrices need to be evaluated. 

They are [RI~], [&I], [&I, [&I, [RIo], [Rt], [Tn], and [&I. If the radii of curvature 

of the annular waveguide sections 2 and 4 are equal, i.e., if r2 = r4 then only [R12], 
[R2,], [RIo] ,  [R,], and [T12] need to be evaluated. 
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3. Hybrid Asymptotic Modal Analysis for Determining the Elements 

of the Scattering Matrices 

3.1 Modal Field Structure 

To determine the elements of the scattering matrices, a knowledge of the modal 

fields of the two types of uniform waveguides must first be obtained. Figure 3.1 

shows a parallel plate guide which extends to infinity in both directions. The total 

field propagating in the &&direction inside the parallel plate guide can be expressed 

as a summation of the orthonormal waveguide modes of the guide: 

where the coefficient A: determines the relative strength of mode n. The orthonor- 

mal modes are normalized according to 

Ld [e:(y) x i:(y)] - ( G ) d y  = 1. 

Figure 3.1: Parallel plate waveguide geometry. 
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In any waveguide there are an infinite number of modes. However, there is 

always a finite number of propagating modes, the rest being evanescent (they decay 

exponentially along the ax is  of the guide). The evanescent modes are ignored in this 

analysis as they contribute negligibly for the reasons explained in chapter 2. If only 

the propagating modes are included, the summation is truncated at N = int(kd/r), 

the integer portion of kd/r. Notice that the number of propagating modes increases 

linearly with the width of the guide. Therefore, electrically large inlets may support 

too many waveguide modes to allow an efficient modal analysis. Chapter 6 discusses 

an alternative ray method useful for large guide widths, however, the latter is not as 

accurate because it ignores diffraction effects at the open end which propagate into 

the guide and can eventually dominate over the reflection effects over long paths. 

For the TE case 

and for the TM case 

nr 
d 

= iP,cos(-y) 

(3.4) 

(3.7) 
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2 i f n = O  
En = { 1 otherwise (3.10) 

where Zo is free space impedance, Yo is free space admittance and k is the free 

space wave number, 2r/A. The subscripts “t” and “a” signify the transverse and 

axial components, respectively, of the fields which lie in the plane of incidence (in 

this case, the j j  and i components, respectively). Notice that for the TE case there 

is only a i-component of the E-field. Similarly, there is only a i-component of 

the H-field for the TM case. This helps simplify the analysis of two dimensional 

structures. The derivation of these modes is given in Appendix A. 

These modal fields can be physically interpreted in terms of an equivalent set 

of modal ray fields by expressing the sine and cosine terms in their Euler form and 

combining their exponential arguments as shown in Appendix A. For the TE case 

and for the TM case 

(3.11) 

(3.12) 

where 

(3.13) 
nn- 
kd e,, = sin-’(----). 

As figure 3.2 shows, the above alternative expressions for 2,,(y)e*JPnz and &,,(y)e*jflnE 

represent oppositely traveling plane waves within the guide which make a charac- 

teristic modal ray angle of 8, with the walls. This ray-optic interpretation will be 

important when the reflection from a junction is calculated later. 

Figure 3.3 shows an annular guide which extends to infinity in the &+-directions. 

This, of course, is physically impossible because it would just connect up with itself 

to form a closed ring. However, this is allowable mathematically, and is neccesary to 

avoid the periodic + boundary condition of an annular guide of 360 degrees because 
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Figure 3.2: Modal rays of the parallel plate waveguide. 

Figure 3.3: Annular waveguide geometry 
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the bent portions of the inlet are made up of sections of annular guides which are 

fractions of this. The total field propagating in the *$-direction can be expressed 

as (see Appendix B) 

For the TE case 

(3.14) 

(3.15) 

(3.16) 

Rn(ka) = 0 

(3.19) 

(3.20) 

where the transcendental equation (3.20) is solved for the eigenvalues v,,. For the 

TM case 

(3.21) 

(3.22) 

(3.24) 
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CONCENTRIC/ 
CAUSTIC 

Figure 3.4: Modal rays of the annular waveguide. 

RL(lca) = 0 (3.25) 

where the transcendental equation (3.25) is solved for the eigenvalues v,,. HLi), Hi t ) ,  

I?(')', vn and Hi:)' are the Hankel functions of the first and second kinds of order v,, 

and their derivatives with respect to argument, respectively. For this case @ is the 

transverse direction and 4 is the axial direction. 

The modal ray form of the modal fields in the annular guide are obtained us- 

ing the Debye Tangent approximation for the Hankel functions. This is done in 

Appendix B. The geometrical interpretation is shown in figures 3.4 and 3.5. It 

consists of oppositely crossing cylindrical waves that form a circular modal caustic 

which is concentric with the walls of the guide with radius vn/lc. The angles these 
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Figure 3.5: Whispering gallery type modal rays of the annular waveguide. 
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Figure 3.6: Field of a whispering gallery type mode. 

modal rays (with cylindrical spreading) make with the guide walls are given by 

cos-I( 5) 
ka ea* = 
vn e,,,, = cos-1( 

(3.26) 

(3.27) 

As shown in figure 3.5, the caustic contour can lie inside the guide. This spe- 

cial case is called a “Whispering Gallery” (WG) mode and is encountered in most 

concave surface guided wave problems. This particular type of waveguide mode 

confines most of its power in between the caustic contour and the outer wall, as 

shown in figure 3.6. So, ray-optically, the propagating part of a WG mode never 
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“sees” the inner wall even though its eigenvalue is dependent on the existance of 

the inner wall. 

It is seen from the ray-optical forms that the waveguide modes of the parallel 

plate guide and the annular guide are closely analogous. In fact, the number of 

propagating modes are almost always the same for the two types of guides if they 

are of the same width. Furthermore, it is straightforward to show that the modes of 

the annular guide approach those of the parallel plate guide as the radius approaches 

infinity. 

3.2 Evaluation of the Elements of the Scattering Matrices 

The elements of all the scattering matrices are calculated by first replacing the 

discontinuities in the guide with equivalent currents which simulate the effects of 

the discontinuity [l]. The reflection and transmission type matrix elements are then 

simply the excitation coefficients due to these currents radiating in a uniform guide 

of infinite extent when a mode of unit amplitude is incident on the junction in 

question. For example, to find the elements of [ R 4  the junction would be replaced 

by a uniform parallel plate guide with equivalent currents where the junction used to 

be (see Figures 3.7 and 3.8). It is then important to find these equivalent currents 

accurately. The excitation coefficient of the nth mode due to current sources in a 

uniform guide (see Figure 3.9) is given by [l] 

(3.28) 

(3.29) 

for the TE  and T M  cases, respectively, in the &ii directions. f and d are the 

equivalent electric and magnetic current sources and iL is the unit vector in the 

axial direction. The subscripts “t” and “a” again mean “the component in the 

transverse direction (to ii)” and “the component in the axial direction”. It is noted 
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Figure 3.7: Mode incident on junction between waveguide sections 1 and 2. 

CURRENTS 

Figure 3.8: Junction replaced by parallel plate waveguide with equivalent currents. 
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Figure 3.9: Current sources in a cross section of a uniform guide of infinite extent. 
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that (3.28) and (3.29) apply to both transmission and reflection calculations where 

the integrations are performed over the appropriate source regions which must lie 

in a cross section of the guide. 

3.2.1 Junction Transmission Matrices 

The transmission matrix elements 2'' are found by replacing the incident modal 

field with equivalent incident electric and magnetic surface currents in the aperture 

formed by the junction and then evaluating the excitation of the transmitted modes 

by these currents using (3.28) and (3.29). To illustrate the procedure, [T12] will be 

derived for the TE case. [TI21 describes the transmission of energy from section 1 

across the junction to section 2. T;" is the transmission matrix element which is 

the excitation coefficient of the mth transmitted mode in section 2 when the nth 

mode of section 1 is incident on the junction. Using equation (3.28), it is given by 

where ii is 4 and 

The equivalent currents, f =  ii x d and ~ = 2 x ii are given by 

4 

Jn = 2 x Li(y) 
= -iPnYoF Pn sin( nn -y) 

d 
-4 

M,, = i i ( y )  x 5 
nn 
d 

= $P,, sin( -y). 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 
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Substituting back into equation (3.30) gives 

(3.36) 

Using y = p - b and changing variables to u = k p  results in 

The integration is done numerically or possibly through the use of asymptotics if 

the guide is large enough. 2';" is found similarly for the T M  case 

If 2';" is derived using the same procedure, it is found that 7';" = T,",", as men- 

tioned earlier in Chapter 2. 2';" is the same as T." with the appropriate changes 

in radii a and b. 

The equivalent sources ,& and A& are based on the modes incident on the 

junction. This approximation should generally provide the dominant contribution 

to TE". A correction to this approximation can be deduced via a modification of 

Ufimtsev's Physical Theory of Diffraction in which equivalent currents based on the 

fringe wave diffraction by the junction are used to obtain this correction [3]. The 

latter correction is usually weak and is therefore neglected here. 

3.2.2 Transmission Matrices of the Open End 

The coupling of the incident plane wave into the first section is described by 

I 
I 

. the column matrix [Toll, as defined in chapter 2. The elements of [Toll are found 

using, once again, equivalent currents and the excitation coefficient equation very 

similarly to the manner in which the junction transmission matrices were derived 

above. The element T,", is the excitation coefficient of the nth mode of section 1 due 

to the plane wave of unit amplitude incident at angle 6. For the TE case 
I 

(3.39) 

I 
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The equivalent currents l a n d  G are found as before using the Kirchhoff approxi- 

mation indicated previously in section 3.2.1, namely 

Substituting back into equation (3.39) and integrating gives 

- -yopnde-j;kdaine 1 *n-1 (case+$) 
4 T,”, - 

. {sinc [;kd(sinOn -sin@) 1 
11 &d( sin en + sin 0) 

where 

sin z 
sincz = -. 

2 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

is understanda Notice that the sinc function peaks when 8 = *On, whic le physi- 

cally when the modal ray form of the modes is considered. The coupling is maximum 

when the incident plane wave lies along a modal ray angle. 

The T M  case is found similarly as 

1 { sinc [ Zled(sin 0, - sin e)] 
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kd(sin 8, + sin 8) (3.46) 

a n - 1  (case+$) 
1 - { sinc [ 2 kd(sin 8, - sin 6 ) )  

kd(sin 8, + sin 8) . I) (3.49) 

Notice again that due to the sinc functions, the radiation is maximum along the 

direction of the modal ray angles. Also notice the close similarity between the 

expressions for TG and 2’;. This is due to reciprocity. 

The T M  case is found similarly and is given by 

The elements of the matrix [TI,] are found using the aperture integration (AI) 

technique. The element T;”, is the coefficient of the radiated field due to the nth 

mode of section 1 being incident on the open end. For the TE case, it is defined by 

where p is the distance to the receiver referenced from the lower edge (z,y = 0) 

of the inlet. This integral is derived in Appendix E. The aperture field is the nth 

modal field, 

n7r 
d 

= P, sin( --Y) (3.48) 

= P,YOB Pn sin( -y). 
d 

Substituting for the aperture field, integrating and removing the cylindrical wave 

term gives the matrix element as 
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1 { sinc [ kd( sin 6, - sin 6) ]  

(3.50) 

3.2.3 Reflection Matrix Elements for a Junction 

The reflection matrix elements are found by replacing the discontinuity of a 

junction with equivalent line currents placed on the walls at the junction and then 

finding the excitation of the reflected modes by these currents [l]. The equivalent 

line currents are found using the Geometrical Theory of Diffraction (GTD). First, 

the modal ray form of the incident mode is used to find the modal ray field incident 

on the discontinuity. That incident modal ray field undergoes diffraction at the 

discontinuity. Then the line current which radiates in the presence of the waveguide 

walls is found using the diffraction coefficient for the discontinuity. The method will 

be illustrated by deriving [Rlo] and [Rlz]. 

The geometry relevant to [Rlo] is shown in Figure 3.10 and the equivalent ge- 

ometry with the discontinuity replaced is shown in figure 3.11. R;" is the reflection 

matrix element which is the excitation coefficient of the mth mode reflected from 

the open end of section 1 when the nth mode is incident from section 1. For the TE 

case, using equation (3.28) 

where ii = 6 and 

mn 
d 

im(y) = iPmsin(---y) 

(,3.51) 

(3.52) 

(3.53) 

(3.54) 

Since the line sources are located at the junction on a conducting plane, the electric 

source is shorted out leaving only magnetic currents. For the TE case these magnetic 

27 



Figure 3.10: Geometry relevant for finding [R,,]. 
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Figure 3.11: Aperture replaced by equivalent currents. 
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sources are a line of &directed infinitesimal dipoles located at QO and Q d .  The 

equivalent sources are therefore 

(3.55) 

(3.56) 

where b ( y )  is the Dirac delta function. Substituting back into equation (3.51) gives 

(3.57) 

It remains only to find the scalars M 2 ( Q o )  and k f $ ( Q d ) ,  which are the strengths 

of the line dipoles. This is done by finding the modal ray form of mode n incident 

on the discontinuities and using the appropriate diffraction coefficient [l] which is 

presented in Appendix C. The line source strengths are then given by [4] 

(3.58) 

(3.59) 

where 8, and 8, are the modal ray mode angles of the reflected and incident modes 

and, using equation (3.11), 

(3.60) 

(3.61) 

Substituting equations (3.58)) (3.59)) (3.60) and (3.61) back into equation (3.57) 

gives the final expression 

REIn = { -pmPny~fiDJ(B,,B,) if m + n even 
0 otherwise 

(3.62) 

[RIO] for the TM case is found similarly, except that magnetic line sources are 

used rather than magnetic line dipole sources [4], 
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Figure 3.12: Geometry relevant for finding [R12]. 

The final expression is then 

RF = { pmpazO@Dh(@m,8,) m + n even 
0 otherwise 

(3.64) 

(3.65) 

(3.66) 

Notice that since the diffraction coefficient is reciprical, [Rlo] is symmetric. This 

reduces the number of computations considerably. 

Figure 3.12 shows the relevant geometry for finding [R12]. The matrix [Rlz] 

relates the modes reflected back into section 1 from the junction between sections 1 

and 2 when a mode is incident also from section 1. It is found exactly the same as 

[Rlo] except that now the diffraction coefficients are for discontinuities in curvature. 
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Figure 3.13: Geometry relevant for finding [Rzl]. 

For the TE case the matrix elements are given by 

1 R;"," = - - P  2 m P Y  n ~ J G  

and for the TM case by 

(3.67) 

(3.68) 

The diffraction coefficients DS,h for a discontinuity in curvature are given in Ap- 

pendix C. Notice again that due to the diffraction coefficients being reciprical, [ I 2 1 2 1  

is also symmetric. 

Figure 3.13 shows the relevant geometry for finding [R21]. The matrix [R21] 
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relates the modes reflected back into section 2 from the junction p = 2, g = 1 when 

a mode is also incident from section 2. The derivation is the same as above, except 

that now we are dealing with the modal fields of section 2. It yields the following 

for the TE case, ~ 

RY = -1 Ja {km(P) * J:, - [kmt(p) + kma(P)l* n;i,> dP (3.69) 
2 b  

(3.70) 
4 

J,, = 0 

(3.73) 

(3.74) 

(3.75) 

(3.77) 

where the diffraction coefficients are again for a discontinuity in curvature. If either 

of the modes are of the whispering gallery type, one must neglect the second term of 

32 



’,,,,,, 

I 
0 

Figure 3.14: Double bend geometry in a parallel plate waveguide of infinite extent. 

equation (3.77) which involves the discontinuity at Qb since there is no whispering 

gallery modal ray incident at Qb. 

for the T M  case is found similarly and is given by 

with the same condition on whispering gallerly modes as before. 

As a numerical example of the reflection from a junction, consider the waveguide 

of Figure 3.14. For the TE case, this guide allows only one propagating mode in 

each section. Therefore, the matrices all have just a single element, so they are 

replaced by scalars. Figure 3.15 plots the magnitude of the component reflection 

coefficients R12, R21, and R24. Figure 3.16 plots the combined reflection from the 
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15: Reflection coefficients of the three junctions of the double-bend 
radius. 
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three junctions RKSM. It is given by 

where 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

(3.84) 

The transmission coefficients were found by conserving power flow across a junction. 

As the plots show, these junction reflections are extremely small so that the 

reflection from the termination of an inlet, such as the one in Figure 1.1, would 

completely dominate the total reflection. If the termination is perfectly absorbing, 

the field scattered by just the edges at the open end would dominate total scattering. 

For these reasons, the reflections from the smooth junctions between waveguide 

sections are usually neglected. The amount of energy reflected internally from the 

open end is of the same order as the external scattering by the open end so that 

this scattering mechanism should be included. 

3.2.4 Reflection Matrix Elements for an Impedance Termination 

As an example of a termination reflection matrix, the case of a senli-infinite 

planar dielectic termination is derived in this section. However, the numerical re- 

sults shown later use a perfectly conducting termination because this is a worst 

case where all the energy reaching the termination is reflected back. The reflec- 

tion matrix [Rt] for a planar surface impedance termination is diagonal with the 

elements being the appropriate reflection coefficients for plane waves incident on 
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Figure 3.16: MSM reflection coefficient of the double bend vs. bend radius. 
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Figure 3.17: Geometry relevant to finding [Rt].  

an impedance space. Such an impedance boundary can be created by employing 

a semi-infinite dielectric termination within the waveguide section 5 as shown in 

Figure 1.1. Figure 3.17 shows the geometry relevant to [Rt] .  For the TE  case the 

diagonal elements are given by 

(3.85) 

where pr and er are the relative permeability and permittivity, respectively, of the 

termination impedance. For the TM case, the diagonal elements are given by 

(3.86) 

It is noted that the surface impedance referred to above is simply that which 

is associated with the above reflection coefficients for the dielectric interface shown 

in Figure 3.17. It is further noted that the expressions for the reflection coefficient 

(and hence the associated impedance) depends on the mode number through 0,. 

The case of the perfectly conducting planar termination is obtained by letting er in 

equations (3.85) and (3.86) go to infinity which makes Ry" equal -1 and 1 for the 

TE and T M  cases, respectively. 
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3.2.5 Scattering from the Open End 

describes the scattering from the open end as defined in chapter 2. It is 

found by considering the diffraction of the incident plane wave by the two edges 

of the open end of a semi-infinite parallel plate waveguide. The scattered field, 

including only first order diffractions, can be written as 

(3.87) 

I where D8,h is the appropriate soft or hard wedge diffraction coefficient as given in 

Appendix C. Using equations (2.12) and (2.14), the junction reflection coefficient 

can be identified as 
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4. Modal Perturbation Technique 

In this chapter, the hybrid modal analysis method will be extended to inlet 

cavities which have a thin absorber coating on their inner walls. The perturbational 

method which will be used changes only the modal propagation constants pn and v,, 

and leaves the transverse orthonormal modal field structure unchanged. Therefore, 

the analysis is exactly the same as in the perfectly conducting case of the previous 

chapter, except for small perturbations to the propagation matrices [P'] due to the 

presence of loss on the inlet walls. Also, the diffraction coefficients for the scattering 

from the open end must be adjusted to handle wedges with one perfectly conducting 

face and one impedance face. 

It will be shown for the parallel plate waveguide that the perturbation of the 

propagation constants p,, can be obtained using only the plane wave reflection co- 

efficients of the impedance surface and the modal ray angle. Extending this idea to 

the annular waveguide makes it easy to obtain the perturbation of the propagation 

constants u,, which would otherwise be very complicated both analytically and nu- 

merically. It is then shown that a thin absorber coating can be represented by an 

equivalent surface impedance. 

4.1 Perturbation of the Modal Propagation Constants in a Parallel 

Plate Waveguide Due to Nearly Perfectly Conducting Impedance 

Walls 

Figure 4.1 shows the geometry of a parallel plate waveguide of infinite extent with 

impedance boundary conditions on the walls. 2, is the normalized (to free space 

impedance) surface impedance and Y, = 1/Z, is the normalized surface admittance. 

Starting with the TE case, the nth orthonormal modal E-field propagating in the 

&&direction can be written in the form 
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Figure 4.1: Parallel plate waveguide geometry with impedance walls. 

where P, is a normalization constant. Substituting this into the wave equation 

(A.4), introducing the separation constant ICn and solving the resulting differential 

equation for the y variable gives the general solution for the transverse modal field 

as 

B and k,, remain to be evaluated using the impedance boundary conditions on the 

walls. The E-field must satisfy the equations 

ek(0 )  - jkY ,e , (O)  = 0 

e k ( d )  + j k Y , e , ( d )  = 0. 

Substituting (4.2) into these boundary requirements gives the solution for B and 

the transcendental equation for finding k ,  as 

k ,  - kY,  
kn + B =  

The perturbation requirement is that the surface impedance is nearly perfectly 

conducting, or lY,l >> 1. Using this approximation, the ( k , / k ) 2  term of (4.7) can 
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be neglected and (4.2) can be rewritten as 

Y,  - 2($) = [. + 2 ( 3 ]  e jaknd .  

For the perfectly conducting case Y, = 00, the solution for k, is k, = nn/d. There- 

fore, the perturbed form of k ,  will be written as 

(4.9) 
nn 
d 

k ,  = - + I C :  

where the perturbation kk is expected to be small for large values of Y,. Substituting 

this form into (4.8) and rearranging gives 

(4.10) 

Because Y, is large, the terms on both sides of (4.10) must be close to unity. There- 

fore, the exponential term can be approximated by the first two terms of its Taylor 

series expansion: 

e j l k h d  M 1 + j2kkd.. (4.11) 

(4.10) also shows that kk is small for large Y,, as expected. Using this form in (4.10) 

after some algebra gives 

(j4dlk)k; + (4/k + j2dY, 4- j4nn/k)kk + 4nn/&d = 0. (4.12) 

Again, because Y# is large, all the terms in (4.12) can be neglected except the Y8 

term and the constant term. Solving for k; gives the perturbation of k,  for the TE 

case as 

k ,  I = -('). j 2  
dY,  kd 

(4.13) 

As expected, kk is small for large values of Y, (it is known from the previous chapter 

that nn/kd is less than one for propagating modes). 
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I The desired result is the perturbation of the propagation constant Pn. This is 
I obtained by substituting (4.9) and (4.13) into (4.3) which gives 

(4.14) 

where the (1/Y,)2 term is neglected. Because Y, is large, the square root in (4.14) 

can be approximated by the first two terms of its binomial expansion which gives 

(4.15) 

from which the perturbation to the propagation constant can be identified as 

Using the modal ray angle expression (A.17), #, can be rewritten as 

. 2 sin2&, p; = - J - - -  

d Y, COS 8, 

(4.16) 

(4.17) 

for the TE  case. 

The T M  case is handled similarly, with the nth orthonormal modal H-field, 

boundary conditions and transcendental equation for k, represented as follows: 

(4.18) 

(4.19) 

hk(O) - jkZ,hn(O)  = 0 (4.21) 

hk(d)  + jkZ,hn(d)  = 0 (4.22) 

(4.23) 

(4.24) 

The perturbation requirement for this polarization is that the surface impedance 

is nearly perfectly conducting, or 2, is very small. From (4.24) it is seen that 2, 

I 

i 
l 
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should be much less than I C , / & .  The smallest value of IC, is IC1 = Ir/d (for the 

perfectly conducting case), so the TM perturbation requirement is 12.1 << n/kd. 
This is a more difficult requirement to meet because the inlet width d is usually 

fairly large in terms of wavelength. Using this approximation, the 2: term of (4.24) 

can be neglected and (4.24) can be rewritten as 

kn (j-) - 22, = (4.25) 

For the perfectly conducting case 2, = 0, the solution for IC, is again IC, = nr/d 

and the perturbed form of ICn can be written as in (4.9) where the perturbation IC; 

is expected to be small for small values of 2,. It should be mentioned here that 

this perturbation requirement should be heeded much more closely than in the TE 

case because I C ,  can be fairly small. Therefore, 2, should be much smaller than &I. 

Substituting this form into (4.25) and rearranging gives 

(4.26) 

Because 2, is small, the terms on both sides of (4.26) must be close to unity, so 

(4.11) can again be used to approximate the exponential term. This also shows that 

k; is small, as expected. Using (4.11) in (4.26) after some algebra gives 

(j2/k)ICf + (j2n7r/ICd + j42,)IC; + 4Z,/d = 0. (4.27) 

Because 2, and kk are small, the IC: and 2,kk terms of (4.27) can be neglected. 

Doing this and solving for kl, gives 

k: - j22, -($). 
- d  (4.28) 

The perturbation to &, is found by substituting (4.28) and (4.9) into (4.20) and 

using the binomial approximation to the square root function as before, giving 
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Using the modal ray expression (A.17), p: can be rewritten as 

for the T M  case. 

(4.30) 

4.2 Perturbation of the Modal Propagation Constants  in  a Waveguide 

Using the Plane Wave Reflection Coefficient for a n  Impedance Sur- 

face 

In this section it will be shown that the perturbation to the propagation con- 

stants can be obtained using only the modal ray angles and plane wave reflection 

coefficients. This will be derived rigorously for the parallel plate waveguide and then 

extended to the more complicated annular waveguide. For this derivation, it is again 

neccessary to assume that the surface impedance is nearly perfectly conducting, i.e., 

1x1 >> 1 for the TE case and lZ,( << ?r/lcd for the TM case. 

4.2.1 Parallel Plate Waveguide 

Starting with the TE case, the z-propagating term due to the perturbed prop- 

agation constant e-jpkO will be transformed into a term involving only a reflection 

coefficient and the modal ray angle 8,. The propagating term is first rewritten using 

(4.17) as follows: 

(4.31) 

Because Y, is large, the term in parenthesis in (4.31) can be approximated with the 

first two terms of its Taylor expansion giving 
tanen 

e-jphz z (1 - 
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-00- d ---too 

I 'z,, Y, 

Figure 4.2: Modal ray form of the waveguide modes in a parallel plate waveguide. 

= (- sine,, + Y, - 3 tanen 

sine,, + Y, 
9 tanen x (- sine,, - ") 

sine,, + Y, 
(4.32) 

where R,(B,) is the soft reflection coefficient for a plane wave incident on a surface 

admittance Y, making an angle 8, with the plane of the surface. The geometrical 

significance of this form is illustrated in Figure 4.2 which shows the crossing plane 

waves of the modal ray form of the waveguide modes of a parallel plate waveguide. 

As the modal field propagates a distance d /  tan e,, in the =-direction, the plane waves 

of the modal ray representation undergo one reflection from the waveguide walls. 

This is how the perturbation to the propagation constant of a mode is obtained using 

only a plane wave reflection coefficient and the distance a mode propagates along 

the axis of the guide between consecutive reflections. Using (4.32), this perturbation 

is solved in terms of the reflection coefficient for the TE case as 

(4.33) 
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sine, - Y8 
sine, + Y,' & ( e n )  = (4.34) 

The TM case is done similarly as follows 

5 tanen 
sine, - Z, - si) 

= ( sine,, + 2, 
sine, - 2, 

sine,, - 2, 
sine, + 2, &,(e,,) = 

(4.35) 

(4.36) 

(4.37) 

where &(en) is the hard reflection coefficient. 

It is mentioned again that the expressions derived in this section for are valid 

only for the nearly perfectly conducting guide in which 1x1 >> 1 for the TE case 

and lZ,l << n / k d  for the T M  case. 

4.2.2 Annular Waveguide 

The method derived in the previous section for finding the perturbation to the 

propagation constants using the modal ray angles and reflection coefficients is now 

extended to the annular waveguide. Starting with the whispering gallery type mode, 

Figure 4.3 shows the geometry relevant to finding the perturbation u;. Considering 

the modal ray form of the modes in this guide, it is seen that the crossing cylindrical 

waves reflect from the outer wall once every angular distance 28,,,. Therefore, the 
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Figure 4.3: Geometry for finding the perturbation to the propagation constants in 
the annular waveguide, whispering gallery case. 
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perturbed +propagation term can be written for the TE  case as 

Solving for u; gives 

1 

(4.39) 

where the soft reflection coefficient R, is given by (4.34). The T M  case is found i similarly as 

(4.40) 

where the hard reflection coefficient Rh is given by (4.37). 

Figure 4.4 shows the geometry relevant for finding u: for the non-whispering 

gallery type mode of the annular waveguide. It is seen that a modal ray undergoes 

one reflection each from the inner and outer walls for every angular distance 2(8,, - 
0,). Therefore, the perturbed modal propagation in the &direction can be written 

for the TE case as 

Solving for uk gives for the TE case 

' 1  

and for the T M  case 

(4.42) 

(4.43) 

Once again, it is emphasized that this derivation is valid only for nearly perfectly 

conducting waveguides with lY,l >> 1 for the TE case and IZ,( << .rr/lcd for the TM 

case. 
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Figure 4.4: Geometry for finding the perturbation to the propagation constants of 
the annular waveguide, non-whispering gallery case. 
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GROUND PLANE 

Figure 4.5: Plane wave reflection from a dieletric layer covering a perfectly conduct- 
ing ground plane. 

4.3 Equivalent Surface Impedance for a Thin Absorber Coating on a 

Perfectly Conducting Ground Plane 

It will be shown in this section that a dielectric layer covering a perfectly con- 

ducting ground plane can be replaced by an equivalent surface impedance using the 

plane wave reflection coefficients for the two types of surfaces [8]. The equivalent 

surface impedance will in general be dependent on the incidence angle. 

Figure 4.5 shows the geometry for this type of configuration with a plane wave 

incident at an angle 6. The soft (TE) reflection coefficient for the coated ground 

plane is given by 

sin e - -Jerp, 1 -  COS^ e cot( ktJe,p, - cos2 6 )  
3PT 

I* 
sin 8 + 4- ,/e+, - cos2 6 cot ( k t  Je,p, - cos2 0) W )  = (4.44) 

where e, and p, are the relative (complex) permittivity and permeability, respec- 

tively, of the dielectric layer. The corresponding reflection coefficient for a surface 
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impedance is given as in (4.34) as 

sin8 - Y, 
= sin8 + Y, 

(4.45) 

where Y, = 1/Z, is the surface admittance. Equating these two types of reflection 

coefficients it is seen that the equivalent surface admittance Y, can be expressed as 

a function of e r ,  p r ,  8, and kt: 

(4.46) 

The “thin absorber coating” criterion is kt1-1 << 1. 

argument form of the cotangent function to be used which for the TE case gives 

This allows the small 

(4.47) 

which eliminates the angular dependence of the equivalent surface admittance. It 

is seen that for small values of ktp,, the surface admittance Y, is large, satisfying 

the perturbational requirement of section 4.1. 

For the T M  case, the hard reflection coefficients of the dielectric layer covering 

the ground plane and a surface impedance are given by 

sin 8 - iJe+p, - cos2 B tan( kt Jcrpr - cos2 B )  
sin8 + i d c r p r  - cos2 Btan(kt&p, - cos2 8) 

(4.48) -- _ _ _ - ~  r h ( 8 )  = 
e+ 

(4.49) 

respectively, from which it is seen that the equivalent surface impedance can be 

expressed as 

2, = - ;I \ /erp,  - cos2 8 tan( kt \/erpr - cos2 8). 
e? 

(4.50) 

Again using the thin absorber coating criterion, the small argument form of the 

tangent function can be used which gives 

1 
er 

2, M jkt(pr - - cos’ 8). (4.51) 
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It is seen again that the perturbation requirement of section 4.1 is met if k i p ,  is 

small enough to make 2, small. 

For the TM case, 2, is not independent of incidence angle for the thin absorber 

coating case unless is large enough to make the second term of (4.51) negligable, 

but still sinal1 enough to satisfy the thin absorber coating criterion. If this additional 

approximation is made, then (4.51) is the same as (4.47) because Y, = l/Z,. 

4.4 Numerical Results Using the  Hybrid 

Asymptotic Modal /Modal  Per turbat ion 

Method  

In this section backscatter results obtained using the hybrid modal technique 

with the perturbed propagation matrices will be presented in the form of backscatter 

vs. aspect angle plots for various inlet configurations. Emphasis will be placed on 

seeing the effects of offsetting the termination of a straight inlet, with an S-bend. 

The parameters which will be varied are frequency, polarization, amount of loss 

in the absorber coating and the amount of offset. All of the cases in this section 

have a thin layer of absorber coating on the inner walls of the guide, except for the 

termination which is perfectly conducting. 

Figure 4.6 shows the first two inlet geometries. Notice that the S-bend geometry 

has the same dimensions as the straight inlet with its termination offset one inlet 

width. The inlets will be analyzed at 10 and 35 GHz. At 10 GHz there are 6 

propagating modes in the waveguide sections of these inlets and at 35 GHz there are 

23. Figures 4.7 and 4.8 compare the calculated backscatter vs. aspect angle for the 

lossless straight inlet with measurements taken on a 3-dimensional rectangular inlet 

of the same planar dimensions. The 3-D inlet iiiodel was shaped so that scattering 

from the exterior termination was minimized. This scattering mechanism was not 

included in the calculation. The results agree quite well, considering one is in two 
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Figure 4.6: Straight and S-bend inlet geometries for numerical backscatter results. 
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Figure 4.7: TE backscatter vs. aspect angle for the straight inlet at 10 GHz. - 
Measured, - - Calculated. 

3 0  .' -60. -30 .  0 .  30.' 60.' M : 
THETA I D E G )  

Figure 4.8: TE backscatter vs. angle for the straight inlet at 35 GHz. - 
- - Calculated. 

Measured, 
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dimensions and the other is in three. 

In the remaining backscatter plots of this section, the perfectly conducting result 

(no absorber coating) will be plotted along with the lossy result and the backscatter 

due to only the open end. The amount of loss due to the absorber coating used is 

approximately 1 dB per reflection at normal incidence. In other words, the power 

density of a plane wave incident on a ground plane coated with this absorber is 

reduced by about 1 dB after reflection. The exact values of the coating parameters 

used here are as follows: At 10 GHz 

t = .001 inches 

er = lO- j5  

pr = 5 - j 1 0  

and at 35 GHz, 

t = .001 inches 

= 3 - j 3  

p r  = 1 - j3.  

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

These values give an equivalent surface admittance of IYaI x17 for the TE  case. 

Therefore, the perturbation requirement lYal >> 1 is fairly well satisfied for these ab- 

sorber parameters. For the T M  case, the equivalent surface impedance is lZ,l x.06. 

?r/kd is .148 at 10 GHz and .042 at 35 GHz. These values do not satisfiy the pertur- 

bation requirement 2, << n / k d  very well for this case so the TM backscatter results 

for absorber coated ducts in this chapter are not, expected to be very accurate. 

Figures 4.9-4.16 show the backscatter vs. aspect. angle results for the inlets of 

Figure 4.6 for the two frequencies and polarizations used. The plots show the 

general trend that the effect of the offset is to flatten out the backscatter pattern, 

removing the peak near the axis of the inlet where the termination would be directly 
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Figure 4.9: TE Backscatter vs. aspect angle for the straight inlet at 10 GHz. -- 
Lossless, - - 1 dB loss/refl., - - - E m  diffracted. 

Figure 4.10: TE Backscatter vs. aspect angle for the S-bend inlet at 10 GHz. -- 
Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 
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Figure 4.11: TM Backscatter vs. aspect angle for the straight inlet at 10 GHz. -- 
Lossless, - - 1 dB Ioss/refl., - - - E m  diffracted. 

Figure 4.12: TM Backscatter vs. aspect angle for the S-bend inlet at 10 GHz. -- 
Lossless, - - 1 dB loss/refl., - - - E m  diffracted. 
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Figure 4.13: TE Backscatter vs. aspect angle for the straight inlet at 
Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 
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35 GHz. -- 

Figure 4.14: TE Backscatter vs. aspect angle for the S-bend inlet at 35 GHz. -- 
Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 
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Figure 4.15: TM Backscatter vs. aspect angle for the straight inlet at 35 GHB. - 
Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 

Figure 4.16: TM Backscatter vs. aspect angle for the S-bend inlet at 35 GHz. -- 
Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 
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visible for the straight inlet. The presence of the absorber coating further reduces 

the backscatter, however, it does not have much effect in the case of the straight 

inlet near the axis because the perfectly conducting termination is still directly 

visible. 

It is noticed that for the 10 GHz, TM case, the S-bend does not have much 

of an effect on reducing the backscatter near the axis. This is because the T M  

polarization allows the TEM mode (zero mode angle) to propagate in both inlets 

and is the dominant power carrying mode near axial incidence. The S-bend will 

have little effect on this type of mode. Also, the aborber coating will have little 

effect on this mode because the E-field is norrual to the guide walls. However, the 

TEM mode does not exist in more practical three-dimensional inlets, so this is only 

a two-dimensional effect. 

To see if increasing the amount of offset that the S-bend introduces further 

reduces the backscatter pattern, the annular sections of the S-bend inlet of Figure 

4.6 were increased from 42 to 50 degrees in angular extent. The backscatter results 

for this inlet appear in Figures 4.17-4.21. Comparing these results with those of 

Figures 4.10, 4.12, 4.14, and 4.16 it can be seen that increasing the amount of offset 

has little effect on the envelope of the backscatter pattern for the lossless cases 

but reduces further the pattern envelope for the absorber coated cases. This is 

expected because the interior coupled energy has to travel a longer distance inside 

the inlet. For the lossy case this means more attenuation is introduced by the 

absorber coating. However, for the lossless case this only changes the shape of the 

backscatter pattern because the coupled energy is redistributed but none is lost. 
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Figure 4.17: TE Backscatter vs. aspect angle for the extended S-bend inlet at 10 
GHz. -- Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 

-1s: 0 : Is: 30: us: 
THETA (DEGI 

Figure 4.18: TM Backscatter vs. aspect angle for the extended S-bend inlet at 10 
GHz. -- Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 
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Figure 4.19: TE Backscatter vs. aspect angle for the extended S-bend inlet at 35 
GHz. - Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 

Figure 4.20: TM Backscatter vs. aspect angle for the extended S-bend inlet at 35 
GHz. -- Lossless, - - 1 dB loss/refl., - - - Rim diffracted. 
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5. Integral Equation Solutions of Internal Wave Reflection and 

Transmission in an S-Shaped Waveguide 

In this chapter, the internal wave reflection and transmission in an S-shaped 

waveguide geometry is solved using an integral equation numerical approach. This 
technique yields a formally rigorous solution, but is not very efficient in terms of 

computer time cost. Nevertheless, it provides a valuable check on the accuracy 

of other approximate and more efficiently obtained solutions such as the one con- 

etructed via a hybrid asymptotic modallmodal perturbation approach in Chapters 

3 and 4. 

Referring to Figure 5.1, the S-shaped waveguide consists of two flat and two 

circular sections. The waveguide wall has a normalized surface impedance 2. The 

second flat section may be semi-infinite in length or terminated at a finite distance 

with a normalized surface impedance 2,. The waveguide width is a. The inner 

radius of the circular sections are bl and 6 2 ,  and their angular spans are @I and 

@2. A waveguide mode is incident from the left in the first flat section. Integral 

equations will be set up for solving the aperture fields at the various junctions 

between the different sections. Once the aperture fields at the junctions are known, 

they can be used to calculate the reflected and transmitted modes. 

In the following, presentations will be given for the TM case. But the results 

are also applicable to the T E  case, if the impedance 2 and 2, are replaced with 

the corresponding admittances. The time convention dWt is assumed and omitted 

in the formulations. 

5.1 Field Representations for the Flat Sections 

In a parallel-plate waveguide whose wall has a surface impedance 2 normalized 

to the free space impedance, the field of a waveguide mode satisfies the homogeneous 
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n t' 

Figure 5.1: Waveguide geometry 

wave equation 

- + - + I C 2  Gn = O , O < x s a , - o o < y < o o ,  
a2 a2 

8 x 2  ay2 

and the boundary conditions 

- aGn = -jkZGn, at x = a ,  (5.2) dX 

where k is the free space wavenumber. The solutions to (5.1) and (5.2) can be 

written in the form 

where 
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and ,Lln are roots of the equation 

The waveguide modal field (5.3) is normalized according to 

such that 

The functions fn(z) associated with different Pn are orthogonal, i.e. 

fn(e)fm(z)dz = 0, if n # m. 

A waveguide mode of (5.3) is incident from the left in the first flat section of 

the S-shaped waveguide. The incident wave gives rise to reflected and transmitted 

waves. Therefore, the total field in the first flat section consists of the incident mode 

as well as some reflected modes. 

Let u(z1,yl) denote the total field (magnetic field in the TM case) where the 

argument (x1,yl) indicates the first flat section. u(x1,yl) also satisfies (5.1) and 

(5.2). An expression for u(x1,yl) will be derived with the use of Green's second 

identity. The desired Green's function is a solution to the inhomogeneous wave 

equation 

satisfying the boundary conditions (5.2) together with aG/ayly=O = 0, and the 

radiation condition as Jy - y'J - 00. Specifically, 
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where y< and y> denote, respectively, the snialler and larger of y' and y. Applying 

Green's second identity to u ( q ,  y1) and G'( 21, y1; z:, yi) in the first flat section yields 

(5.10) 

where the subscript i is the index number of the incident mode. 

The same procedure can be readily applied to obtain an expression for the total 

field u(z2 ,  y2) in the second flat section, 

where R,, = 0 if the second flat section is semi-infinite, and 

if the second flat section is terminated with a surface impedance 2, (normalized to 

the free space impedance) at a distance T from the junction between the second flat 

and curved sections. 
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and the boundary conditions 

6G - = j k Z G ,  at p =  b, 
6P 
6G 
- = - j k Z G ,  at p =  b + u ,  
6 P  
- = 0, at 4 = 0, and $ = CP. 6G 
64 

The solution for G(p, 4; p’, 4’) is 

where 

J,, N, = Bessel and Neuman functions, 

JL,NL = derivatives of J,  and N, w.r.t. the argument, 

p< , p> = the smaller and larger of p and p’, 

(5.13) 

(5.14) 

A, = JL(kb + leu) + j Z J , ( k b  + ku) 
B, = Jl (kb)  - j Z J , ( k b )  

C, = Nl(&b + bu) + j Z J , ( k b  + k a )  

D, = NL(kb) - jZN, (kb)  
2, if u = 0 I 1, if u >  0 ’ 

€0, = 

Now, applying Green’s second identity to G ( p ,  4; p’, 4‘) and u(p, $), which sat- 

isfies the homogeneous wave equation 

(5.15) 
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and the boundary conditions 

dU - = jkZu,  at p =  b, 
OP 
a U  
- = - jkZu,  at p =  b + a ,  
aP 

yields an expression for u(p, +), 

(5.16) 

(5.17) 

One may attach a subscript 1 or 2 to the various variables in (5.17) to signify either 

one of the two circular sections. 

6.3 Integral Equations for the Unknown Aperture Fields 

One may set up integral equations for solving the unknown aperture field quanti- 

ties &/& (or &/&) at the junctions from (5.10), (5.11), and (5.17), by imposing 

the following boundary conditions 

and 

(5.19) 

68 



The integral equations are 

(5.21) 

(5.22) 

Note that for simplicity, the subscripts 1 and 2, which distinguish terms in the two 

circular sections, are omitted from some of the variables under the summation E, 
in (5.20)-(5.22). 

The integral equations (5.20) - (5.22) will be solved by the moment method. 

Using the substitutions 
N 

n 
N 

N 

n 
N 

n 
N 

(5.23) 

where Un, Vn and W, are unknown constants, multiplying (5.20)-(5.22) by kfm(z), 
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and integrating the resulting equations from z = 0 to z = a, one obtains 

(5.24) 

(5.25) 

m = 1,2 ,..., N ,  (5.26) 

where 

q = 1,2. (5.27) 

In sum, there are 3N linear equations which can be solved for the unknown U n ,  Vn 

and W,. 

Using the substitutions given in (5.23), the reflected waves in the first flat section 

can now be written as 

(5.28) 

Numerical examples of the reflection coefficients associated with (5.28) axe given 

next. 

5.4 Numerical Results 

The integral equation technique presented in this chapter is not efficient in terms 

of the computer time cost. The primary reason is due to the fact that the series 

70 



in the field representation for the circular section given in (5.17) converges very 

slowly'. For instance, in the following examples, 12 terms are retained in the series 

representation for the fields in the flat sections given in (5.10) and (5.11), in contrast 

to about 200 terms retained in the series of (5.17). Nevertheless, as pointed out 

earlier, this formally exact solution is presented mostly to check the accuracy of the 

perturbed hybrid approach of Chapter 4. 

Table 1 lists the reflection coefficients R,,,,, for the waveguide geometry speci- 

fications: a = 3.386667A, h = = 45", Y = 5.046133A, 

2 = 2, = 0, T M  caae. MM denotes the moment method solution of this chapter 

and HM denotes the hybrid solution of chapters 2, 3 and 4. 

= 4.766733A, al = 

'The computer program for computing B e d  and Nenman functions of fractional orders WM 

supplied by Prof. J.R. Richmond. 
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The reflection coefficients for the same waveguide geometry but with the TE 

polarization are listed in Table 2. 

flGm 
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
3 3  
3 4  
3 5  
3 6  
3 7  
4 4  
4 5  
4 6  
4 7  
5 5  
5 6  
5 7  
6 6  
6 7  
7 7  

TABLE 1 
krn (MM) krn (HM) 

0.644 f45.8" 0.649 L42.9" 
0.253 168.9" 0.246 165.4" 
0.262 L -144.4" 0.257 L-148.0" 
0.576 L -20.4" 0.578 L-23.6" 
0.095 L-59.6" 0.099 L-59.6" 
0.280 L-0.6" 0.283 L-3.2" 
0.182 L-16.0" 0.172 L-16.7" 
0.880 L-173.G" 0.885 L-177.1" 
0.158 L -1 1G.O" 
0.218 1-117.2" 0.217 L-120.6" 

0.141 L 114.9" 

0.054 L146.3" 0.056 L141.6" 
0.209 L-100.0" 0.204 L-103.9" 
0.206 1-123.9" 0.217 L-127.0" 
0.658 f 175.5" 0.660 L 172.2" 
0.187 L179.1" 0.187 L178.3" 

0.342 L37.3" 0.347 L35.4" 

0.725 L92.7" 0.723 L90.0" 
0.151 L179.7" 0.155 L17'i.O" 
0.150 L17.2" 0.158 L17.2" 

0.383 L 37.6" 0.392 L 34.3" 

0.571 f-3.7" 0.564 f-6.9" 

0.088 L -9G.3" 0.083 L-98.7" 

0.119 L-110.1" 0.117 L-115.0" 

0.691 1-10.6" 0.684 L-12.6" 
0.165 L -56.5" 0.153 L-59.2" 
0.472 L166.3" 0.486 L 164.7" 

0.915 L107.1" 0.914 L104.3" 
0.197 f2.1" 0.182 L-0.9" 
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m 
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
2 2  
2 3  
2 4  
2 5  
2 6  
3 3  
3 4  
3 5  
3 6  
4 4  
4 5  
4 6  
5 5  
5 6  
6 6  

TABLE 2 
&am (MM) &m (HM) 

0.722 L 51.8" 0.716 L50.6" 
0.296 194.1" 0.288 L94.4" 
0.409 L96.7" 0.505 L92.0" 

0.266 L96.9" 0.265 L91.7" 
0.127 L113.8" 0.130 L109.9" 

0.237 L-135.3" 0.248 L-138.0' 

0.552 L-109.4" 0.543L115.0' 
0.339 L-21" 0.355 1-29.90 
0.591 /.-123.1" 0.586 L-126.3' 
0.337 L-21.6" 0.349 L-25.1' 
0.174 L-23.3" 0.1 71 L-27.9' 
0.515 L-47.3" 0.489 L-52.6" 
0.43.5 C95.9" 0.426 L92.4' 
0.368 L158.4" 0.372L155.5" 
0.219 L64.9" 0.222 LG1.8" 
0.457 L119.1" 0.501L118.3° 
0.384 L93.1" 0.359 L87.2" 
0.177 L91.4" 0.179 L90.6" 

0.104 L116.5" 0.101L113.9° 
0.723 L-36.3" 0.727L-40.6" 

0.929 L-88.1" 0.927L-90.8" 

Two examples of the reflection coefficients for the waveguide geometry with 

impedance wall are given in Tables 3 and 4. The geometry specifications are: a = 

3.386667A, bl = b2 = 4.766733A, = (P2 = 42", Y = 5.842A, 2, = 0, 2 = 

0.0532 + j0.0266, TM case in Table 3 and TE case in Table 4. 

73 



TABLE 3 
- nm 
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
3 3  
3 4  
3 5  
3 6  
3 7  
4 4  
4 5  
4 6  
4 7  
5 5  
5 6  
5 7  
6 6  
6 7  
7 7  

&am (MM) &am (HM) 
0.324 L-19.0" 0.519 L-17.4" 
0.1 13 L-35.8" 
0.064 L25.4" 

0.130 L118.6" 
0.020 L66.5" 

0.012 L 169.7" 
0.303 144.7" 

0.178 L88.2" 
0.067 198.9" 
0.007 L102.8" 
0.249 167.4" 

0.057 1-143.9" 

0.007 L-79.9" 

0.042 L-163.9" 

0.108 L-141.1" 
0.194 L-140.3" 
0.019 / 155.3' 

0.385 17.8" 

0.008 L 130.7" 
0.004 L69.3" 
0.130 L64.2" 
0.190 L175.2" 
0.055 L89.4" 
0.221 L57.6" 
0.012 L-71.7" 
0.144 L13.1" 

0.028 L-0.8" 

0.104 L-172.5" 

0.088 L-58.2" 
0.044 L-72.9" 
0.058 L-119.7" 
0.115 L110.6" 
0.029 L64.9" 

0.0491 150.5" 
0.284 143.8" 
0.04 1 L 1 19.5" 
0.191 L79.3" 
0.076 (89.1" 
0.013L85.9" 
0.267 L55.3" 

0.006 1-62.4" 

0.49 L-153.5" 
0.179L-140.6" 
0.041 /-l66.6" 
0.026 L-2.2" 
0.406 L6.0" 
0.093L -175.8" 
0.049 L-162.0" 
0.013 L47.9" 
0.127 L79.6" 
0.269L 172.6" 
0.061 L84.4" 
0.329 L61.9" 

0.137 L11.6" 
0.015L-88.5" 
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TABLE 4 
&?n (MM) &m (HM) 

0.450 L39.0" 0.479 L42.7" 
?HI2 
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
2 2  
2 3  
2 4  
2 5  
2 6  
3 3  
3 4  
3 5  
3 6  
4 4  
4 5  
4 6  
5 5  
5 6  
6 6  

0.120 L-74.7" 
0.368 L57.4" 
0.120 L 154.2" 
0.065 L-12.3" 
0.028 L-153.7" 
0.451 L-150.4" 
0.288 L148.2" 
0.370 L160.7" 
0.197 L-84.0" 
0.089 L-174.3" 
0.612 L-127.5" 
0.234 111.1" 
0.052 L-18.4" 
0.036 L-138.2" 
0.569 L-72.6" 
0.153 L-42.9' 
0.078 L-85.8" 
0.705 L171.2" 
0.088 L38.6" 
0.249 L-165.6" 

0.149 L-68.5" 
0.364 L54.6" 
0.105 L152.5" 

0.016L 162.8" 

0.264 L152.7" 
0.386 L155.7" 

0.074 L-6.0" 

0.476L-146.7" 

0.195 L-86.2" 
0.080 L- 172.5" 
0.584L-130.4" 
0.243 L18.5" 
0.057L-36.2" 
0.030L-140.2" 
0.583 L-69.1" 
0.184 L-52.4" 
0.067 L-83.9" 
0.7071: 171.3" 
0.075 L37.4" 
0.238L-159.2" 

Note that for the TE case, the appropriate corresponding admittance must be 

substituted for 2 and 2,. As the above comparisons show, the more efficient hybrid 

asymptotic modal/modal perturbation method closely approximates the formally 

exact moment method solution. 
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6. Alternative Solution for t h e  Scattered Field Using the Geometrical  

Optics Ray Approach 

In this chapter the electromagnet,ic backscatter from the inlet of Figure 1.1 

is calculated using the geometrical optics ray technique. The geometrical optics 

(GO) field incident on the inlet opening is partly scattered in the exterior region 

by the edges at the open end as f i e d g e  and the rest is coupled into the inlet. Only 

the incident rays which directly enter into the inlet are included; the remaining 

contribution to the fields coupled into the inlet via diffraction of the incident field 

by the edges at the open end is ignored. The incident rays which enter into the 

inlet undergo multiple reflections from the interior walls of the inlet. These GO rays 

which are multiply reflected from the interior walls of the inlet propagate toward the 

termination at the rear of the inlet and then bounce back via additional reflections 

at the walls to provide a GO based field representation in the aperture at the open 

end. Further wave interactions between the open front end and the rear termination 

are ignored because these are weaker. The field U,,, which is essentially produced 

by the radiation into the exterior space from the above mentioned GO based field 

in the aperture at the open end, is found as usual via the aperture integration (AI) 

-4 

technique [11,12]. This aperture integration is done exactly the same way as in 

chapter 3 using equation (3.47). The difference is that now o a p  is based on the GO 

field in the aperture at the open end rather than the modal field of equation (3.48). 

The advantage of this method is that although not as accurate as the other methods 

discussed earlier, it can handle inlets of arbitrary shape and absorber coating, rather 

than ones that are made up of uniform waveguide sections and have thin absorber 

coatings. Also, as mentioned breifly in chaper 2, the hybrid asymptotic modal 

method becomes increasingly cumbersome as the guide width becomes large. The 

GO/AI method actually improves in accuracy for those cases. On the other hand, 

the GO/AI method can also become inefficient and cumbersome for inlets because 
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of the large number of rays to be tracked. The main reason for any inaccuracies in 

this GO/AI approach is because it does not include any effects of diffraction that 

enter within the duct and other higher order effects. The latter include the junction 

and aperture reflections considered in chapter 2. The GO/AI method of analysis is 

presented here for comparison purposes and to supply an alternative procedure for 

analyzing the scattering from inlet cavities, especially at higher frequencies where 

the modal method may become too inefficient and for more lossy absorber coatings 

for which the modal perturbation technique is not valid. Again, U stands for the 

&component of the E-field for the TE case and the &component of the If-field for 

the T M  case. 

6.1 Tracking the GO Ray Field 

The GO field is found by breaking up the incident plane wave which enters the 

inlet into N collimated beams of equal width, as shown in Figure 6.1. These smaller 

columnated beams or ray tubes are traced through the inlet via the rear termination 

until they are about to exit through the aperture, as shown in Figure 6.2. Actually, 

only the two rays which form the boundaries of the smaller ray tubes are traced. 

The contribution of each ray tube to the aperture integral is found by breaking up 

the AI equation of Appendix E into a summation of sub-apertures formed by each 

of the exiting ray tubes in the aperture. 

where each integral in the summation represents the contribution to the field scat- 

tered by the interior cavity effects arising from each ray tube. It is easy to show 

that the two terms of (E.6) and (E.12) are the same for this formulation which is 

why (6.1) has only one term. Figure 6.3 shows the relevant geometry pertaining to 

the limits y,, and yn+l which occur in the integrals of this summation. The y,, and 

yn+l shown are found from ray-tracing. Notice that because the ray tube undergoes 
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N BEAMS / 

Figure 6.1: Incident plane wave divided into N columnated beams of width A'. 

Figure 6.2: Ray tube traced through an inlet. 
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Figure 6.3: Geometry of a ray tube subaperture. 

reflections from curved inlet walls, it is no longer columnated and has some spread- 

ing (either divergent or convergent). The field in the ray tube will appear to be due 

to a radiating line source located at some caustic, as shown, with a phase factor 

representing the propagation path delay of the ray tube up to that point. The mag- 

nitude of the field in each subaperture (y,, < y < yn+l) is obtained by conserving 

power in the ray tube which terminates in that subaperture. It is assumed that 

each ray tube is small enough so that the magnitude of the field in the sub-aperture 

is approximately constant within that subaperture. To conserve power in each ray 

tube, 

where A' is the width of the ray tube when it enters the inlet, and it is given by 

d 
N AI = -case; 

whereas, A,, is the width when it exits, transverse to the direction of propagation. 

U:p(y) is the scalar part of fi:P(y). The (scalar) field in the aperture is then given 
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via GO by 

where R, is the path length of the nth ray tube inside the inlet up to the last caustic, 

r, is the product of all the reflection coefficients which describe the reflections 

encountered each time the ray tube reflected from an inner wall of the inlet, and c, 

is the total number of caustics the nth ray tube passed through. The rays are traced 

according to Snell's law, which requires that ray paths before and after reflections 

are straight lines, and at reflection points the angle of reflection equals the angle of 

incidence. Furthermore, the reflected ray, the surface normal and the incident ray 

at the point of reflection all lie in the same plane which for the two-dimensional case 

is always in the plane of the paper. The reflection coefficient for a ray reflecting off 

a semi-infinite dielectric termination inside the inlet cavity is given for the TE case 

by 

cos4 - d p , ~ ,  - sin2 4 rt = 
cos4 + qm Pr 

and for the TM case by 

where p, and E, are the relative permeability and permittivity of the impedance, 

respectively, and 4 is the angle the nth ray tube makes with the surface normal 

when it strikes the dielectric termination. The reflection coefficient for a dielectric 

coating on a ground plane is given by [8] 

1 
3Pr 

sin 8 - - , /~ ,p,  - cos2 8 cot( k t  , / E + ,  -  COS^ 8) 
sin 8 + &d~,p, - cos2 8 cot( kt, /c,p,  -  COS^ 0) 

ra = 



for the TE case and by 

sine - i,/ E? p, -  COS^ 0 tan( Ict ,/E+ -  COS^ e) 
sin e + 2,/crp, ET - cos2 e tan(IctJe,p, - cos2 e) 

ET ra = ___ 

for the TM case where E, and pr are the relative permittivity and permeability, 

respectively, of the coating, t is the thickness of the coating, k is the free space wave 

number and is the angle the propagation vector of the incident plane wave makes 

with the surface. 

To find c,, the total number of caustics a ray passes through, it is necessary to 

keep a track of the relative caustic position as the ray is traced. Each reflection 

from a curved surface changes this position. Figure 6.4 shows a typical reflection 

from such an interior boundary or surface of the inlet and how a new caustic is 

formed. The new caustic distance pe after that reflection in Figure 6.4 is given in 

terms of the previous caustic distance p: before the reflection in that figure by [5] 

p: R sin q5 
Rsinq5 + 2p:' P c  = 

Notice that pc as well as p: can be negative. R which is the radius of curvature 

of the surface at the point of reflection is positive for a convex boundary but is 

negative for a concave boundary. If pc < 0 and lpcl is less than the distance from 

the reflection point to the reciever point p, then the caustic lies inside of the inlet 

and c, is incremented. This must be checked after each reflection while tracing the 

ray through the inlet. The caustic of the incident ray tube entering the inlet is at 

infinity in the direction of the source. 

The integral in equation (6.1) can now be written as: 

(6.10) 
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Figure 6.4: Reflection from a curved surface. p: is the caustic distance before 
reflection at QR and pc is the new caustic distance after reflection. 

a2 



where 

For Ay,, << s,, ~ ( y )  can be approximated as a linear function of y 

4 ~ )  M Sn + (9 - y,,) sin e,, (6.12) 

so that the integral of equation (6.1) can be evaluated in closed form to give the 

final result as: 

(6.13) 

The total scattered field is given as the sum of the cavity scattering and the field 

scattered by the edges at the open end of the inlet: 

(6.14) 

(6.15) 

where is given by equation (3.88). 

6.2 Numerical Examples Based on the GO/AI Method 

As it turns out, the GO/AI method gives increasingly less accurate results as 

the inlets become longer. This is due to the fact that the method does not include 

the diffracted fields inside the inlet which generally become dominant as the wave 

propagation distance inside the inlet increases. The reflected beam that is initially 

collimated usually becomes diffused at larger distances inside the inlet because of 

the presence of fields diffracted by edges at the open end which enter into the 

inlet. Also, the method becomes less accurate at lower frequencies because fewer 

inlet waveguide modes propagate. For these reasons, the sample inlets used in this 
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5 O  

t-- 10.211.-= 

Figure 6.5: Straight inlet geometry. 

I Figure 6.6: Offset inlet geometry. 

section are shallower than those of the previous chapters. Their geometries are 

shown in Figures 6.5 and 6.6; it is seen from those figures that again one inlet is 

straight and the other is offset or S-shaped in which the offset inlet consists of two 

curved sections, The parameters of the absorber coating are the same as in (4.52)- 

(4.57) with an additional case where t = ,005”. This lossier coating causes about 

5 dB of loss per reflection at normal incidence compared with 1 dB for the thinner 

I coating ( t  = .OOl”). 

Figures 6.7-6.22 show the backscatter pattern vs. aspect angle for the two inlets 

of Figures 6.5 and 6.6 at 10 and 35 GHz for the two polarizations. The top figure 

on each page is the hybrid solution for the lossless and 1 dB loss/reflection cases, 
1 

a4 



included for comparison. The aspect angle is limited to within 20 degrees 

of the axis and the data points are 2 degrees apart in these calculations because 

the ray-tracing method takes a large amount of computing time. In general, the 

more complex the inlet shape, the more ray tubes are needed to converge to the 

GO based result. Therefore, the offset inlet of Figure 6.6 requires more ray tubes 

(and hence more computing time) than the simple parallel plate inlet of Figure 6.5. 

The plots illustrate that the GO/AI method can roughly predict the average 

of the backscatter pattern, but details are lacking. This is expected due to the 

approximate nature of a technique which does not include effects of diffraction. 

The only advantage of this method, other than its analytic simplicity, is that it is 

not limited to inlets made up of uniform waveguide sections which a modal method 

would require. It is noticed from the backscatter patterns that for this shallower 

inlet, the termination is not as well hidden for near-axial incidence and that the 

presence of the absorber coating has a substantial effect in consistently reducing 

the overall backscatter pattern. 
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Figure 6.7: TE Backscatter pattern for the straight inlet at 10 GHa, modal solution. 
-- Lossless, - - 1 dB loss/refl., - - - leading edges only. 
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Figure 6.8: TE Backscatter pattern for the straight inlet at 10 GHz, GO/AI so- 
lution. -- Lossless, - - 1 dB loss/refl., - - - 5 dB loss/refl., - - . leading edges 
only. 
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Figure 6.9: TE Backscatte 
-- Lossless, - - 1 dB loss 

: pattern for the S-bend inlet at 10 GHz, modal solution. 
'refl., - - - leading edges only. 

Figure 
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6.10: TE Backscatter pattern for the S-bend inlet at 10 GHz, G O /  
* leading -- Lossless, - - 1 dB loss/refl., - - - 5 dB loss/refl., 
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Figure 6.11: TM Backscatter pattern for the straight inlet at 10 GHz, modal solu- 
tion. -- Lossless, - - 1 dB loss/refl., - - - leading edges only. 

Figure 6.12: TM Backscatter pattern for the straight inlet at 10 GHs, GO/AI 
solution. -- Lossless, - - 1 dB loss/refl., - - - 5 dB loss/refl., leading edges only. 
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Figure 6.13: TM Backscatter pattern for the S-bend inlet at 10 GHz, modal solution. 
-- Lossless, - - 1 dB loss/refl., - - - leading edges only. 

. . . .  . . . . .  . . .  . .  . . . . . . .  . . . . .  . . .  ........................................... ..- ..-. ..... . . . . . . .  . . .  . . . . . . .  . . .  . . .  ....................... )...(. ~ . . ~  .............. ~ .... . . . . . .  . . .  . . .  . . . . .  .............................. .. . -. . . . . . .  . .  . .  . .  . .  . .  . .  . . .  

. . .  . .  .. i. ._ ..i .... i . .  . .  ..  ̂. . . . ) . . . I  . . .  . , . .  . .  . . . .  ...-. .-..... ... . . . .  7 
- ...,.... :. 
i .i .... i .... 

..+... ... .,. . . .  
j...- . .  

#& ..:. .+.\ 
.............. . . .  . . .  ......... 

. .  
. i. ; . I .  I 

. -. . - ....... . . .  -.. ........ ! 

. F  ........,..., . .  . .  . . . .  * 
+. ,... . ., 

.............. . . .  , .  . . .  . . . , . . . I  ..., . . . .  . . .  . .  . . .  . .  ............. 
. .  . . .  ~ . . _  :...? . .  . .  . . . .  ......... . . .  

........ ,. ... . .  .......... . . .  . . .  - 
18 a. 

Figure 6.14: TM Backscatter pattern for the S-bend inlet at 10 GHz, GO/AI so- 
lution. -- Lossless, - - l dB loss/refl., - - - 5 dB loss/refl., . - * leading edges 
only. 
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Figure 6.15: TE Backscatter pattern for the straight inlet at 35 GHz, niodal solu- 
tion. -- Lossless, - - 1 dB loss/refl., - - - leading edges only. 

Figure 6.16: TE Backscatter pattern for the straight inlet at 35 GHz, GO/AI 
solution. -- Lossless, - - 1 dB loss/refl., - - - 5 dB loss/refl., leading edges only. 
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Figure 6.17: TE Backscatter pattern for the S-bend inlet at 35 GHz, modal solution. 
-- Lossless, - - 1 dB loss/refl., - - - leading edges only. 

Figure 6.18: TE Backscatter pattern for the S-bend inlet at 35 GHz, GO/AI so- 
lution. -- Lossless, - - l dB loss/refl., - - - 5 dB loss/refl., . - - leading edges 
only. 
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Figure 6.19: TM Backscatter pattern for the straight inlet at 35 GHz, modal solu- 
tion. -- Lossless, - - 1 dB loss/refl., - - - leading edges only. 
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Figure 6.20: TM Backscatter pattern for the straight inlet at 35 GHz, GO/AI 
solution. -- Lossless, - - 1 dB loss/refl., ... 5 dB loss/refl., ... leading edges only. 
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Figure 6.21: TM Backscatter pattern for the S-bend inlet at 35 GHa, modal solution. 
-- Lossless, - - 1 dB loss/refl., - - - leading edges only. 

Figure 6.22: TM Backscatter pattern for the S-bend inlet at 35 GHa, GO/AI so- 
lution. -- Lossless, - - l dB loss/refl., - - - 5 dB loss/refl., - - - leading edges 
only. 

\ 
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7. Conclusion 

It has been shown that the effect of employing an S-shaped inlet for making 

the termination not directly visible alters the backscattered pattern so that it does 

not peak near the forward axis of the inlet. Also, the overall pattern envelope 

flattened out and was reduced by a few dB, especially for longer inlets. Adding 

the absorber coating to the straight inlet did not effectively remove the peak in the 

backscatter pattern near the inlet axis. Combining the absorber coating with the 

S-bend offset effectively and consistently resulted in flattening out and reducing the 

overall backscatter pattern, even near axial incidence. 

The scattering from the interior inlet cavity termination is the dominant con- 

tributor to the total scattering by the inlet cavity except when the termination is 

highly absorbing in which case the scattering from the edges at the opening in front 

of the inlet dominates. It was also shown that the reflections from the junctions of 

waveguide sections from which the S-shaped inlet is “built up7’ are very small and 

can usually be neglected. The interior reflection from the open end was seen to be 

on the order of the scattering by the edges so this contribution to the backscatter 

should be included. 

The field expansion/matching technique of chapter 5 gives analytically accurate 

results and can handle any absorber coating which can be characterized by an equiv- 

alent surface impedance. However, the method is largely numerical and therefore 

gives little insight into the scattering mechanisms of the interior region of the inlet 

as well as requiring a large amount of computing time. Its main purpose here was 

as a means of checking the more approximate and efficient hybrid technique. 

The GO/AI method of finding the backscattered field was not as accurate as the 

modal method, especially for smaller guide widths and longer inlets. However, its 

usefulness becomes apparent when the guide width becomes large so that there are 

many propagating modes. At higher frequencies, the modal method becomes more 
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cumbersome but it remains quite accurate. The GO/AI method tends to become 

more accurate at higher frequencies. It is reasonable to suggest that the modal 

method be used for guides of width less than about 15 wavelengths (30 propagating 

modes) and the GO/AI method for larger guide widths. 
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A. Orthonormal Modes of the Parallel Plate Waveguide 

This appendix derives the expressions for the orthonormal modal fields of the 

uniform parallel plate waveguide. The modal ray form of these modes is also derived. 

“Orthonormal” means that each mode carries power independently of all the 

other modes and they are normalized to carry unit power. Mathematically, this is 

writ ten 

where 5,, is the Kroeneker delta function given by 

1 i f m = n  
6 = (  0 i f m f n  

and s represents any complete cross-section of the guide. 

Figure A.l  shows a parallel plate waveguide of infinite extent. Starting with the 

TE case, the electric field is in the i-direction and is a function of z and y 

The E-field is a solution to the wave equation 

(V2+k2)&/) = 0 

Figure A.l :  Parallel plate waveguide geometry. 
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which in scalar form is 

where k is the free space wave number, 2 r / X .  The boundary condition is that E, 

equals zero on the walls of the guide. Using separation of variables and enforcing 

the boundary conditions the solution is found to be an infinite summation of modes 

where 

nr 
d 

iPn sin( -y) 

Pn is a constant which normalizes the power of the nth mode and A$ are arbitrary 

constants. The infinite sum is usually truncated to include only propagating modes. 

For n greater than some number N, the modes are evanescent in nature and die 

out exponentially along the axis of the guide. This cutoff number is one less than 

the the value of n which makes on pure imaginary, or 

kd N = int(-) 
7r 

(the integer portion of k d / r ) .  

The H-field of the guide is derived directly from the E-field using one of Maxwell’s 

equations 

v x #(x,y) = -jwp@z,y) 
k 

w p  = - 
yo 

which gives 

(A.lO) 

( A . l l )  
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n=l 

(A.12) 

(A.13) 

Pn is found by normalizing to unity the power carried by the nth mode. This is 

done by integrating the Pointing vector over a cross-section of the guide and setting 

this equal to unity, 

Substituting and integrating gives 

P, = {T. (A.15) 

The ray-optical form of these modes is found by writing the sine function of 

equation (A.6) in its Euler (exponential) form and combining the exponentials, 

t ( ),TjPn= - - i- p n  [,j(SvTPn+) - , j ( -?yi~ne)]  . (A.16) 
2 j  

n Y  

By making the substitution 

nn 
kd sin@, = - (A.17) 

equation (A.15) can be written 

because 

2 = k\ / l  - sin 8, 

= kcosen.  (A.19) 
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Figure A.2: Modal rays of the parallel plate waveguide. 

This form represents two crossing plane waves which make an angle of 0, with the 

guide walls as shown in Figure A-2. 

The TM case is handled similarly, with the boundary condition being aHz/ay  

equal zero on the walls, 

- + 2 + I C 2  K ( z , y )  1 a2 a2 
az2 a y  

(V2+k2) l l?(z ,y)  = ( 
= o  

00 

l?(z,y) = [A;kn(y)e-jpm" + A,bn(y)eJ@nz] 
n=O 

nr 
d 

Izn(y) = '  i P , C O S ( - y )  

v x &,y) = jwel?(z,y) 

IC 
2 0  

we = - 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

1 
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2 i fn=O 
En { 1 otherwise 

(A .29) 

(A.30) 

and the ray-optical form of equation (A.22) is given by 

( )e-fjPn, = z -  pn [.t ‘k(y &tJn-fs cos 0,) + e  jk( -y sinS,jt cos en) I .  (A.31) 
2 n Y  

Notice that for the TM case, the n = 0 term is included in the summation. This 

corresponds to a TEM mode. Ray-optically this mode is a plane wave traveling 

down the guide with 0, equal zero. 
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B. Orthonormal Modes of the Annular Waveguide 

This appendix derives the expressions for the orthonormal modal fields of the 

uniform annular waveguide. “Orthonormal” means that each mode carries power 

independently of all the other modes and they are normalized to carry unit power, 

as described more fully in Appendix A. The asymptotic ray-optical form of these 

modes is also derived. 
’ Figure B.l shows an annular waveguide of infinite extent. This makes no sense 

physically because the guide would join ends to form a ring. However, it is allowable 

mathmatically to assume that 4 goes to infinity in both directions. It is necessary 

to make this assumption to get the correct waveguide modes to describe the fields 

in small sections of an annular guide, such as the ones used to make up the inlet. 

Starting with the TE case, the electric field is in the &direction and is a function 

of p and 4 

The E-Field is a solution to the wave equation 

which in scalar form is (using the cylindrical form of the Laplacian) 

+ k2 E&,+) = 0 
l a  a 
- - (p - )  + -- 

l a 2  1 [ P a p  aP P 2 W 2  

where k is the free space wave number, 27rlX. The boundary condition is that E, 
equals zero on the walls of the guide. Separating variables and substituting into 

equation (B .3 ) ,  multiplying by p2 and dividing out E,(p,  4) gives 
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Figure B.l:  Annular waveguide geometry. 
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where the separation equation is 

Introducing the separation constant v gives the two independent differential equa- 

tions 

P- P- d R ( p )  + [ ( l e p ) 2 4 ] R ( p )  = 0. 
dP I dP I 

The solutions to equation (B.6) are 

(B.7) is Bessel’s equation and has solutions 

R(p) = Hp)(Icp) and H r ) ( k p )  

where H$l) (kp)  and HL2)(Icp) are the Hankel functions of the first and second kinds, 

respectively, of order v and argument k p .  Using linear combinations of these so- 

lutions and enforcing the boundary conditions gives the complete solution for the 

E-field 

(B.10) 

where 

in which R,(kb) = 0 has been employed and where An is the normalization con- 

stant of the nth mode and B,f are arbitrary constants. If $ had a periodic boundary 

condition corresponding to a 360 degree annular ring, the eigenvalues v,, would be 
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completely determined. However, for the annular guide of infinite extent, the eigen- 

values must be found using the remaining radially p dependent boundary condition. 

Thus, they are found from the transcendental equation 

(B.13) &(ka) = 0 

which usually must be solved numerically. 

As in a parallel plate guide, the summation generally only includes values of n 

for which un is real. This is because for some values of n, vn will be purely imaginary 

and the mode will die out exponentially along the axis of the guide. 

The H-field of the guide is derived directly from the E-field using one of Maxwell’s 

equations 

k 
w p  = - 

y o  

which gives 

(B.15) 

(B.16) 

(B.17) 

An is found by normalking to unity the power carried by the nth mode. This 

done by integrating the Poynting vector over a cross-section of the guide and setting 

this equal to unity, 

(B.18) 

Substituting and changing the variable of integration to u = kp gives the normal- 
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ization coefficient 

A, = (B.19) 

The integral of equation (B.19) can be written in closed form using a property of 

Hankel functions. However, the resulting equation is quite long and cumbersome 

and contains derivatives with respect to the order u, of the Hankel functions. It 

was found that it is easier to just do the integration numerically. 

The ray-optical form of the waveguide modes in the annular guide is obtained 

using the large argument approximation to the Hankel functions (also known as the 

Debye Tangent approximation). For the Hankel function of the second kind, it is 

given by 

(B .20) 

where 

U 

X 
cosy = -. (B.21) 

Using this approximation, the H i t )  term of a mode with the 4 variation included 

can be written as 

Changing variables gives the ray-optical form 

(B.22) 

(B.23) 

(B.24) 

u = psiny (B.25) 

4 = Y+40 (B.26) 

where 40 is a constant. This is the form of an outward traveling cylindrical wave. 

Figure B.2 shows the geometrical significance of this derivation. Notice that u is the 
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Figure B.2: Geometrical significance of the asymptotic form of the modes in an 
annular waveguide. 
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distance from a concentric caustic of radius un/k and y is the angular displacement 

from this caustic. The Hi:) term is handled the same way, 

(B.27) 

(B.28) 

which is the form of the corresponding inward traveling (convergent) cylindrical 

wave. 

Figure B.3 illustrates the modal ray form of the modes of the annular waveguide. 

It consists of crossing cylindrical waves which share a concentric caustic of radius 

vn/k. The angles the rays make with the walls of the guide are obtained easily from 

the ray-optic geometry, 

- cos-1( 5)  ea, - 

eb, = cos-1(----). 
ka 

kb 
vn 

(B.29) 

(B .30) 

It happens that the modal ray austic can lie inside the guide, as shown in 

figure B.4. This special case is referred to as a “Whispering Gallery” (WG) mode 

[I. The significance of this type of mode is that almost all of the power in the 

mode is confined between the modal caustic and the outer wall of the guide. The 

propagating portion of the fields never “see” the inner wall (although the modal 

caustic radius vn/k depends on it) because the fields are evanescent between the 

caustic and the inner wall, as shown in figure B.5. 

The T M  case is handled similarly, with the boundary condition being 6 H z / &  
equal zero on the walls, 

1 8  8 1 a2 
(V2 + k 2 ) i ( p , + )  = - - (p - )  + -- + 4 H z ( p , + )  I P a p  8P P 2 W 2  

= o  (B.32) 
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CONCENTRIC 
CAUSTIC 

+ / K  
Figure B.3: Modal rays of the annular waveguide. 

Figure B.4: Whispering gallery modal rays of the annular waveguide. 
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Figure B.5: Field of a whispering gallery mode. 
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k 
2 0  

W E  = - (B.38) 

( B .40) 

(B.41) 

Notice that the eigenvalues vn for this case are found from the transcendental equa- 

tion (B.36). The ray optical form for the TM case is the same as the TE case with 
, 
I the appropriate change of constants. 
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C. Diffraction Coefficients 

The two types of diffraction effects considered in this report are from a wedge 

and from a discontinuity in curvature. The geometry for the wedge diffraction 

coefficient is shown in Figure C.l. The non-uniform GTD diffraction coefficient 

(Keller’s form) is given by [6] 

W A  n = 2-- 
l r  

where “8” designates the “soft” (TE) case and “h” designates the “hard” (TM) case 

and R,,h is the appropriate plane wave reflection coefficient for the surface. For a 

perfectly conducting surface, R, is -1 and Rh is 1. For an absorber coated surface, 

R,,h is given by equations (4.44) and (4.48) where is R,,h. 

The geometry for the diffraction coefficient of a discontinuity in curvature is 

shown in Figure C.2. The non-uniform GTD diffraction coefficient is given by [7] 
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Figure C.l: Wedge diffraction geometry. 

Figure C.2: Discontinuity in curvature diffraction geometry. 
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D. Symmetry Relations of Matrices 

Refering to Figure D.l,  it is seen that some of the junction matrices are equal 

due to symmetry. These relations are as follows, 

There is a reversal of coordinate systems at the junction between sections 3 and 

4. Therefore, # [T43] and [T64] # [T34] contrary to the symmetry relations of 

(D.5) and (D.6) for the other two junctions. However, it can be shown that there is 

a simple relationship between the elements of the matrices [T34] and [T54]. For the 

TE case it is given by 

Tgn = -(-l)nT;n 

and for the TM case by 

Tzn = (-1)"TG" 

where T r  is the mnth element of matrix [T,]. 

As shown in section 3.2.1, the two transmission matrices at a junction are re- 

ciprocal, 

P . 9 )  

(D.lO) 

(D.11) 
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WA 

Figure D.l: Geometry of the S-shaped inlet. 

[G4] = [T46IT. (D.12) 

With these simplifications, only six of the original sixteen junction matrices need 

to be evaluated explicitly. They are [RH], [R21], [&I, [&I, [Tn], and [&I. If the 

inner radii of the curved sections are equal, i.e., r2 = r4, then 

(D.13) 

(D.14) 

(D.15) 

114 



E. Aperture Integration 

Figure E.l shows the relevant geometry for the Aperture Integration (AI). The 

aperture field is replaced by equivalent Kirchhoff electric and/or magnetic surface 

currents which radiate a far field pattern. 

For the TE  case, the E-field is found from the electric and magnetic vector 

potentials 9 and A' respectively, as [9] 

where 

20 is free space impedance and Yo = 1 / 2 0  is free space admittance. The equivalent 

surface currents for the TE case are given by 

d ( y )  = F'(y) x ( - 2 )  

= iE,"P(y) x (-2) 

= -@E,"P(y) 

J7y) = -2 x ii"(y) 

= -2 x [2HZP(y) + jjH?(Y)] 

= -iH,"p(y).  

Substituting (E.2), (E.3), (E.4) and (E.5) into (E.l), doing the vector operations 

and keeping only the terms of order 1/,/ij gives the final AI formulation for the TE 

case as 
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a &; 
Figure E.l: Geometry for Aperture Integration 

The TM case is found analogously as follows: 

f(y) = -2 x iPP(y) 

= -i x iH,OP(y) 

116 



Bibliography 

(11 A. Altintas, P.H. Pathak, W.D. Burnside, !‘Electromagnetic Scattering from a 

Class of Open-Ended Waveguide Discontinuities,” Technical Report 716148-9, 

NASA/Langley Research Center, Hampton,VA, Grant No. NSG 1613, Mar ‘86. 

[2] R. Mittra, S.W. Lee, ____ Analytical Techniques ___ in the ____ Theory of Guided ~ Wavea, 

The Macmillan Company, New York, 1971. 

[3] P. Ya Ufimtsev, “Method of Edge Waves in the Physical Theory of Diffraction,” 

(from the Russian “Method Krayevykh voin v frizicheskoy teorii diffraksii,” Izd- 

Vo Sov. Radio, pp. 1-243, 1962), translation prepared by the U.S. Air Force 

Foreign Technology Division, Wright-Pat terson AFB, Ohio; released for public 

distribution, Sept. 7, 1971. 

[4] P.H. Pathak, C.W. Chuang, and M.C. Liang, “Inlet Modeling Studies,” Tech- 

nical Report 717674-1, The Ohio State University, ElectroScience Laboratory, 

prepared under contract No. N60530-85-C-0249 for Naval Weapons Center, 

China Lake, CA, October 1986. 

[5] P.H. Pathak, “Techniques for High Frequency Problems,” Chapter 4 in 

Handbook of Antenna Theory and Design, eds. Y.T. Lo and S.W. Lee, to be 

published by Van Nostrand Rheinhold. 
________ __ - . - .- - - - 

117 



[SI J.B. Keller, “Geometrical Theory of Diffraction,” J. Opt. SOC. Am., Vo1.52, pp. 

116-130, 1962. 

[7] T.B.A. Senior, “The Diffraction Matrix for a Discontinuity in Curvature,” 

IEEE AP, Vol. AP-20, No. 3, pp. 326-333, May 1972. 

(81 P.H. Pathak, R.G. Rojas, “UTD Analysis of the EM Diffraction by an 

Impedance Discontinuity in a Planar Surface,” Journal of Wave-Material In- 

t eract ion, January 1986. 

[9] R.F. Harrington, Time Harmonic Electromagnetic Fields, McGraw Hill, New 

York, 1961. 

[lo] R.J. Burkholder, P.H. Pathak, “Electromagnetic Fields Backscattered from an 

S-shaped Inlet Cavity,” Technical Report 71661 1-4, The Ohio State University, 

ElectroScience Laboratory, prepared under contract No. F33615-84-k-1550 for 

I USAF/AFSC, ASD, Wright-Patterson AFB, Ohio 45633, July 1987. 

[ll] R.J. Burkholder, “Backscatter Analysis of Two Conducting Inlets,” Mas- 

ter’s thesis, The Ohio State University, Department of Electrical Engineering, 

Columbus, Ohio, August 1985. 

I121 N.H. Myung, P.H. Pathak, “A High Frequency Analysis of Electromagnetic 

Plane Wave Scattering by Perfectly Conducting Semi-Infinite Parallel Plate 

and Rectangular Waveguides with Absorber coated Inner Walls,” Technical 

Report 715723-1, The Ohio State University ElectroScience Laboratory, pre- 

pared under Grant NAG 3-476, for NASA/Lewis Research Center, Cleveland, 

0 hio, September 1986. 

118 


